Koichi Tanaka Laboratory of Advanced Science and Technology

Soft Laser Desorption法発明 30 周年記念

Final Rev. 2.8 26/Feb/2015 Original Rev. 1.0 28/April/2013

本資料は、Soft Laser Desorption (SLD) 及び MALDI の歴史を辿りながら、主なMatrixを一覧にしたものです。 これまで Matrixは数百種類以上も検討されていますが、本資料では特に<mark>黎明期</mark>を重視し、しかもFIRST-ms3dプロで数多く開発した特に液体 Matrix 及び島津グループが関わったMatrixを中心に列記しています。記載されている論文・学会発表情報は、個々のMatrixに対する 世界初(調査時点で情報が入手可能であった文献に限る)または 島津グループが開発に関わった情報 を中心に列記しています。

特に日本語による解説は、今回参考に数点取り上げた文献で示された応用を中心に記述しています。その後の応用範囲等までを 必ずしも反映していない、記載情報が厳密・正確ではない可能性がある事をご了承ください。あらためて、原著他の情報に立ち返って 確認をお願いします。

本リストに記載されているMatrixは、原則論文等に記載された情報に基づいて列記したものであり、試薬として入手可能である **事を保証するものではありません**。例えば、CAS Numberが設定されていても、現在製造中止になっている試薬があります。

下Spectraは、1985年2月島津製作所中央研究所内における報告書に添付された実験結果の一部である。 Vitamin B₁₀は、複雑な構造かつ337nm Laser光を効率高く直接吸収できるため、たとえCopowder (UFMP)を添加しても分解イオン(Product Ion)ばかりが測定されている(下図下)のに対し、Glycerin(液体Matrix)を更に添加すると、明確に分子イオン[M+H]⁺が測定された(下図上)。 この後様々な条件を最適化、分子量1万を超えるタンパク質をも測定可能にするSoft Laser Desorption (/Ionization)等へと進展した。

Element	С	Н	N	0	S	Р	Br	CI	F	I
Monoisotopic Mass	12 (exactly)	1.00782503223	14.00307400443	15.99491461957	31 .97207117441	30.973761998	78.918337579	34.968852682	18.998403163	126.904471853
Atomic Mass	12 .0107	1.00794	14.0067	15.9994	32.065	30.973762	79.904	35.453	18.9984032	126.90447

(統一)原子質量単位(Daltonと同定義)は、炭素12(¹²C)原子の質量の1/12と定義されている。従って¹²Cは上記の様に"12(exactly)"と表記した。

測定技術の進歩により、各元素の同位体存在度は(地球上で起こる様々な過程のため)必ずしも一定ではなく、それが原子量に反映する事が分かってきた背景から、2009 年IUPACは 10の元素について 原子量を単一の数値ではなく 変動範囲で示すことを決めた。---「原子量表(2013)」について / 日本化学会 原子量専門委員会資料 より 上記の"Atomic Mass"(原子量)は、変動範囲で表す前の値で示している。

参考文献: M. Wang, et al. "The Ame2012 atomic mass evaluation (II)" CPC(HEP & NP), Vol. 36, p1603 (2012)

1)

MALDI **Matrix List** for 337(355) nm (1/25)

http://www.first-ms3d.jp/

Koichi Tanaka Laboratory of Advanced Science and Technology

🕀 SHIMADZU

Name	Empir. Form. CAS No.	Monoiso. Mass (Aver. Mass) ¹⁾	Structure	Reference(s)
Cobalt Powder Ultra Fine Metal Powder ("UFMP")	(Co)	58.933194 (58.93)	「機物 試料 (黒色) SEM画像 _200 μm	Don Zakett, Alan E. Schoen, R. Graham Cooks, Philip H. Hemberger "Laser- desorption mass spectrometry / mass spectrometry and the mechanism of desorption ionization" J. Am. Chem. Soc., Vol. 103, p1295 (1981) Patent: JP01731501 (出願:28/Feb/1985)
UFMP(疎水性)は電子反射が」 有機物 試料 (親水性)は電子反射 Matrix: UFMPと 試料 が十分混れ	良好なため、SEM画作 すが少ないため、黒色」 合していない状況を表	象では白色に写る。 こ写る。右写真は、 している。		田中耕一, 井戸壹, 秋田皆史, 吉田住一, 吉田多見男 レーリイオ ン化飛行時間型質量分析装置の開発 IV ー 高質量有機化合物か らの擬似分子イオンの生成 ー"質量分析連合討論会 1B-6 (4/May/ 1987) "MALDI-MS Technical Reports" No.06
"全屋招微粉主"(UEMP)の		halt (Ca) 10804		CollEMPが是ま粒径(20.20mm)が小さく 比較的安価 Colt 同位

体が存在しない、比較的元素番号が小さい、融点・沸点が高くイオン化困難(→不要Backgroundが軽微(右下図参照))、等々が有利なInorganic Matrix の一種。当初より、N₂ Laser (337nm)で検討。質量分離・検出手法等が不十分だった当時、ペプチド・合成オリゴマー等 m/z \$3,000検出が中心。 (近)紫外・可視・(近)赤外 ほぼ全てで吸光度がある "黒体"に近い。金属塊Bulkと比較すると、吸光度・表面積が多大(DIOS説明図参照)で、集光パルス -ザ光照射後、近傍にある分析対象物Analyteに対し<mark>Rapid Heating</mark>を施し、固相(液相)から分解無しで気相への脱離を促進する効果が期待できる。 後に、無機物表面媒体を主体とした"Surface Assisted Laser Desorption/Ionization" (SALDI), "Graphite Assisted Laser Desorption/Ionization" (GALDI), "Desorption/Ionization On porous Silicon" (DIOS)構想へ寄与。

Glycerinとの混合により、"Soft Laser Desorption" (SLD)へと発展 (下記参照)。UFMPを用いたImagingへの活用例もある。

Glycerin, UFMPによるイオン化機構概略図

MALDI **Matrix List** for 337(355) nm (2/25)

Name

Nicotinic

"NA"

Acid

(Niacin)

"**SA**"

Harmaline

ASMS1998

M⁶⁺

上り

100

Int. (%) 80

60

4∩ 20

> 0 10000

Acid

4-Hvdroxv-3-

http://www.first-ms3d.jp/ 🕀 SHIMADZU Koichi Tanaka Laboratory of Advanced Science and Technology Monoiso. Mass Empir. Form. Structure Reference(s) (Aver. Mass)¹⁾ CAS No. Michael Karas, Doris Bachmann, Franz Hillenkamp "Influence of the wavelength in high-irradiance C₆H₅NO₂ 123.03203 ultraviolet laser desorption mass spectrometry of organic molecules" Anal. Chem., Vol. 57 No.14 СООН (123.109)December 1, p2935 (**1985**) 59-67-6 Michael Karas, U. Bahr "Laser desorption mass spectrometry" TrAC Trends in Anal. Chem., Vol. 5, p90 (1986) Michael Karas, D. Bachmann. U. Bahr, Franz Hillenkamp "Matrix-assisted ultraviolet laser desorption of non-volatile compounds" Int. J. Mass Spectrom. Ion Proc., Vol. 78, p53 (1987) Michael Karas, Franz Hillenkamp "Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons" Anal. Chem., Vol.60, October 1, p2299 (1988) Nd:YAG Laser 第4高調波(266nm)用に開発された(337,355nmにおける吸光度は微弱)。 「レーザ照射でアミノ酸単体のイオン化を試みた際に、イオン化が容易な化合物(例:Trp)と混合する事で、難イオン化アミノ酸(例:Ala)のイオン化が促進 された」(1985年論文)事が契機、と言われている(MALDIの原点)。NAを用いた1988年論文で、タンパク質測定が可能である事が発表される。 Ronald Beavis, Brian Chait "Cinnamic acid derivatives as matrices for C11H12O5 224.06847 CH=CHCOOH ultraviolet laser desorption mass spectrometry of proteins" Rapid (224.210)Commun. Mass Spectrom., Vol. 3, p432 (1989) Sinapinic Acid 530-59-6 Ronald Beavis, Brian Chait "Matrix-assisted laser-desorption mass H₂CO 3.5-Dimethoxy-4осн. spectrometry using 355 nm radiation" Rapid Commun. Mass hydroxycinnamic acid Spectrom., Vol. 3, p436 (1989) 元々は、Nd:YAG Laser 第3高調波(<mark>355nm</mark>)用に開発された。MALDIの黎明期から用いられてきたMatrixの1つであるが、現在も 主に <mark>タンパク質</mark>計測 に多く用いられる。pKa: 6.2 のため、正イオン・負イオン両方の計測に適している。 左写真は、SAを用いた場合の試料搭載後Sample Plate 光学顕微鏡画像の一例である。 通常 溶媒乾燥後の表面は 巨視的には均一な薄膜状 になるが、微視的には「荒れた乾燥肌」状態になる。 SAは、pKa: 6.2(ほぼ中性)のため 特に(酸性度が高く 多価イオン生成力の高い)CHCA(pKa: 4.08)と比較する と1価イオンを生成し易く、タンパク質測定結果の解析が 容易である。 Harmaline(14/25参照)は、1価イオンのみ生成の傾向 が更に強い結果が得られている。 M³⁺ "KOMPACT MALDI I" (上写真) は卓上型装置 M²⁺ Matrix: DHBA (1994年発売)であり、この様な小型装置を用いて も、SA使用で IgG(~150kDa)のCluster Ion まで M4+ も測定できている。 M⁵⁺ SA IgG(~150kDa) м²⁺ M⁴ %Int. CHCA Acquired in 1995 М³⁺ Harmaline 2M¹ 20000 30000 40000 50000 60000 70000 m/z m/7 (初出論文は Sinapinic Acidと同一 (1989)) trans-Ferulic C10H10O4 194.05791 CH=CHCOOH Adam Saenz, Catherine Petersen, Nancy Valentine, Stephanie Gantt, Kristin (194.184)Jarman, Mark Kingsley, Karen Wahl "Reproducibility of Matrix-assisted Laser 537-98-4 Desorption/ionization Time-of-flight Mass Spectrometry for Replicate Bacterial осн, Culture Analysis" Rapid Commun. Mass Spectrom., Vol. 13, p1580 (1999) methoxycinnamic acid (初出論文は Sinapinic Acidと同一 (1989)) Caffeic Acid C9H8O4 180.04226 CH=CHCOOH Burkhard Rosinke, Kerstin Strupat, Franz Hillenkamp, Jürg Rosenbusch, 3,4-Dihydroxy-(180.157)Norbert Dencher, Ulrike Krüger, Hans-Joachim Galla "Matrix-assisted laser 331-39-5 cinnamic acid desorption/ionization mass spectrometry (MALDI-MS) of membrane proteins and non-covalent complexes" J. Mass Spectrom., Vol. 30, p1462 (1995)

Sinapinic Acidと同様、元々は Nd:YAG Laser 第3高調波(355nm)用に開発され、主に タンパク質計測に用いられていた。 その後、Ferulic Acidは 微生物(のタンパク質)測定等に用いられ、Caffeic Acidは 膜タンパク質や非共有性化合物の測定等に用いられた。

MALDI **Matrix List** for 337(355) nm (3/25)

http://www.first-ms3d.jp/

Koichi Tanaka Laboratory of Advanced Science and Technology 🕀 SHIMADZU

Name	Empir. Form. CAS No.	Monoiso. Mass (Aver. Mass) ¹⁾	Structure	Reference(s)
" DHB(A)" 2,5-Dihydroxy- benzoic Acid (Gentisic acid)	C7H6O4 490-79-9	154.02661 (<i>154.120</i>)	КООН	Michael Karas, U. Bahr, A. Ingendoh, E. Nordhoff, B. Stahl, K. Strupat, Franz Hillenkamp "Principles and applications of matrix-assisted UV-laser desorption/ ionization mass spectrometry" Analytica Chimica Acta, Vol. 241, p175 (1990) Karstin Strupat, Michael Karas, Franz Hillenkamp "2,5-Dihydroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry" Int. J. Mass Spectrom. Ion Processes, Vol. 111, p89 (1991)

DHBは<mark>水溶性</mark>が高く、Oligosaccharides・Conjugated lipids・(極性の高い)Synthetic polymers(以上[M+Cation]*生成促進)・Peptides(一部 Proteinsにも適 用可能(3/25 Matrix比較図参照))・核酸関連物質等、応用範囲は幅広い。不純物耐性の高さも特徴。CHCAと比較すると、"Cool"(よりソフト)なイオン化が 可能だが、真空中で昇華sublimationし易い。また、337nm吸光度が低く(25/25 吸光スペクトル参照) 乾燥後の不均一な巨大結晶成長により TOF-MSにお いて定量性・再現性・分解能が低下し易い(下写真)が、Ink Jet方式等による微量滴下により、MALDI Imagingへの試行(2007論文)も行われている。

Yutaka Aoki, Atsuhiko Toyama, Takashi Shimada, Tetsuyoshi Sugita, Chikage Aoki, Yukari Umino, Atsushi Suzuki, Daisuke Aoki, Yataro Daigo, Yusuke Nakamura, Taka-Aki Sato "A novel method for analyzing formalin-fixed paraffin embedded (FFPE) tissue sections by mass spectrometry imaging" Proc. Jpn Acad. Ser.B, Vol. 83, p205 (2007) Hong Wang, Chee-Hong Wong, Alice Chin, Ayumu Taguchi, Allen Taylor, Samir Hanash, Sadanori Sekiya, Hidenori Takahashi, Masaki Murase, Shigeki Kajihara, Shinichi Iwamoto, Koichi Tanaka "Integrated mass spectrometry-based analysis of plasma glycoproteins and their glycan modifications" Nature Protocols, Vol. 6, p253 (2011)

"MALDI-MS Technical Reports" No.08

通常DHBを用い た場合、外側から針 状結晶が成長し、ミ クロ的には表面に 凹凸の多い(外側と 内側の組成が異な る)状態になる。

"Chemical Printer"本体(左)とDHB滴下例(右)

Inkjet Printerの機構を応用した"Chemical Printer"にて DHBを滴下した場合、結晶成長 は抑制され、真空蒸着法を用いずにImaging MALDI等への適応が容易となる。

Sadanori Sekiya, Yoshiki Yamaguchi, Koichi Kato, Koichi Tanaka "Mechanistic elucidation of the formation of reduced 2-aminopyridine-derivatized oligosaccharides and their application in matrix-assisted laser desorption/ ionization mass spectrometry" Rapid Commun. Mass Spectrom., Vol. 19, p3607 (2005)

水の表面張力の高さを活用し、水を含むAnalyte溶液の乾固する面積を 最小限に止める事で、実質的な感度向上とRaster時間を短縮できる。 左図は、Offline-LC-MALDI-MSシステムの1例であり、ここでは撥水 性の高い試料Plate表面(緑色)の一部を改質、DHBを"pre-spot"する事で

1907年の高い試料Flate表面(緑色)の一部を改員、DFDを pre-spot 9 る事で "Hydrophilic anchor"を作製した。"Nanoliter spotting"と "溶離液 を試料Plate上で濃縮"を実現した事で、クロマト分解能を損なわずに 極微 量Glycopeptide測定が行えた(2014論文)。

還元力・感度としては 1,5-DANが最も高い結果が得られているが、1,8-DAN, 2,3-DANでもイオン化・還元力が確認されている(2006論文)。

	Na Ma	atrix I Koichi Tanaka	List for Laboratory of A	337(355) nm (6/2 Advanced Science and Tech	5) Inology	http://www.first-ms3d.jp/
Name	E	mpir. Form. CAS No.	Monoiso. Mass (Aver. Mass) ¹⁾	Structure		Reference(s)
" NPOE " 2-Nitrophenyl octyl ether	С 3	14H21NO3 37682-29-4	251.15214 (251.321)	02N Hydrophobic alkyl group	Ute Bah Giessma matrix-a p2866 (*	r, Andreas Deppe, Michael Karas, Franz Hillenkamp, Ulrich nm "Mass spectrometry of synthetic polymers by UV- ssisted laser desorption/ionization" Anal. Chem., Vol. 64, 1992) は非確性のPolymer分析等(二田) いっれる
	БШ		5113。味小王077	ルイル頭を持り待岐を上がし、W		
3-NBA" C7H7NO3 153.04259 3-Nitrobenzyl Alcohol 619-25-0 153.135) H0 No2 No2 H0 No2 No2 Melt. Pnt. : 30-32 deg 153.135)						
Glycerinと同様 FA や Online MALDI等	AB 用 が試	引Matrixとして最も 行された。ESIでは	多く用いられている は、Analyteの電荷	る。MALDI(主に266nm)では、室 数を増加させるために 添加剤とし	温で <mark>液り</mark> て用いら	である特性を利用し、高質量Cluster Ion生成促進 れる場合がある。
Rhodamine 6G	C	28H31N2O3C 989-38-8	478. 20232 (479.010)		CH3 CH3 • HCI • CH3	 D. Shannon Cornett, Michael A. Duncan, I. Jonathan Amster "Matrix-assisted Laser Desorption at Visible Wavelengths Using a Two-Component Matrix" Org. Mass Spectrom., Vol.27, p831 (1992) K. Tang, S. L. Allman, R. B. Jones, C. H. Chen "Comparison of Rhodamine Dyes as Matrices for MALDI-MS" Org. Mass Spectrom., Vol.27, p1389 (1992) Gary Parr, Michael Eitzgerald Lloyd Smith "Matrix
主に3-NBAやGlyc 多くの生体分子は Matrixとして用いる事	erin(可視 いよ	液状Matrix)と混 領域で吸収が弱 り、UV波長での・	合して(可視光MAI く、赤い染料であ イオン化よりFragm	_DIで)用いられた。 るRhodamineは可視光を吸収す entationが発生し難い。	る。これ	 assisted laser desorption/ionization mass spectrometry of synthetic oligodeoxyribonucleotides" Rapid Commun. Mass Spectrom., Vol. 6, p369 (1992)

MALDI黎明期以降窒素レーザ光(337nm)が多く用いられた、考えられる主な理由は?

・特にNd-YAG Laserと比較し、安価・小型

・パルスレーザ(半値幅:1~5nsec)であり、Mass Resolution向上のための"遅延引出し"が本格化する前から TOF-MSに適していた

・ Φ数10µmに絞る事で、ある程度のImagingが可能

・集光部断面におけるレーザ強度が正規分布ではなくほぼ台形Plateauなため、Soft Ionizationに適切なレーザ密度が保てる照射領域が広い

・337nm付近に吸光度が高い化合物が少ない(Matrixのみがレーザ光を直接吸収すれば良い)ため、fragmentationの危険が少ない

--- 25/25 マトリックス別吸光スペクトル 参照

Thioglycerol Melt. Pnt. : < 25 deg	C3H8O2S 96-27-5	108.02450 (108.160)	он н <mark>s</mark> он	左に列記したのは、主に1980年代 Glycerinと同様 Fast Atom Bombardment (FAB) 用Matrixとして用いられた化合物である。 SLD は、FABのアイデア等を参考にして発明された
Sulfolane Melt. Pnt. : 27.5 deg	C4H8O2S 126-33-0	120.02450 (120.170)	o S	Xe等の高速(非荷電)粒子を衝突させても (Dynamic SIMSよりも) "Soft Ionization"が可能になるのは、 ・固体試料が液状Matrixに溶解、固体状態よりも分子間力が弱まる ・真空中でMatrixが液状表面から次第に気化、試料が表面に集積する 等の効果による、と考えられる。
Diethanolamine Melt. Pnt. : 28.0 deg	C4H11NO2 111-42-2	105.07898 (105.136)	но <u>~~</u> N~~он Н	Xe: Xenon G: Glycerin H ⁺ : Proton M: Sample C: Cation Q A: Anion
Triethanolamine Melt. Pnt. : 20.5 deg	C6H15NO3 102-71-6	149.10519 (<i>149.188</i>)	но~^_N^он Он	Q Vacuum
DTT Dithiothreitol Melt. Pnt. : 43 deg	C4H10O2S2 3483-12-3	154.01222 (154.251)	OH HS ∕ SH ÖH	Glycerinを用いた場合の FABイオン化機構概略図 FAB用Matrix解説論文一例: Mitsuo Takayama, Toshie Takahashi "Criterion for the Choice of Matrix in Fast Atom Bombardment Mass Spectrometry" J. Mass Spectrom. Soc. Jpn, Vol. 44, p493 (1996)
PEG polyethylene glycol	(C2H4O)nH2O 		HO (CH₂-CH₂-O) _n H	低分子量PEG(200~600)は 常温で液状であり、固体高分子(極性) Polymerを溶かし込み 液状にする能力があるため、液体Matrixとして試用 例あり(1980年代の実験では Glycerinの代わりにUFMPと混合)。 特に「類似」化学構造化合物(例:高分子PEG)測定に効果が期待できる。

MALDI Matrix List for 337(355) nm (7/25)

http://www.first-ms3d.jp/

Ĩ

Koichi Tanaka Laboratory of Advanced Science and Technology

		Mone	ine Mass										
Name	Empir. Fo CAS No	o. (Aver	r. <i>Mass</i> ¹⁾	Struc	cture	Reference(s)							
4-Nitroaniline	C6H6N2 100-01-	202 138 -6 (15	3.04293 38.124)		2	M. E. Gimon, L reactions of ex Spectrom., Vol. Kermit Murray, spectrometry" J	. M. Preston, T. Solouki, M. A. White, D. H. Russell "Are proton transfer tacited states involved in UV laser desorption ionization?" Org. Mass 27, p827 (1992) David Russell "Aerosol matrix-assisted laser desorption ionization mass J. Am. Soc. Mass Spectrom., Vol. 5, p1 (1994)						
4-Nitrophenol	C6H5N 100-02-	O 3 13 9 -7 (15	Э.02694 39.109)	Ö- N	н] О ₂	Mary Gimon, C Ewald "Matrix- Paclitaxel and R Rory Steven, Al MALDI-MS Im Vol. 24, p801 (2010)	Gary Kinsel, Ricky Edmondson, David Russell, Timothy Prout, Hernita Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry of telated Taxanes" J. Nat. Prod., Vol. 57, p1404 (1994) lan Race, Josephine Bunch " <i>para</i> -Nitroaniline is a Promising Matrix for aging on Intermediate Pressure MS Systems" J. Am. Soc. Mass Spectrom., 2013)						
2,4- Dinitroaniline	C6H5N3 97-02-	9 183 9 (18	3.02801 33.122)	NH ₂ NO	² - NO ₂ 2	Michael Fitzger desorption/ioniz Vol. 65, p3204 (Lisa Preston-Sch matrices used fo Soc. Mass Spect	ald, Gary Parr, Lloyd Smith "Basic matrixes for the matrix-assisted laser ration mass spectrometry of proteins and oligonucleotides" Anal. Chem., (1993) haffter, Gary Kinsel, David Russell "Effects of heavy-atom substituents on or matrix-assisted laser desorption-ionization mass spectrometry" J. Am. trom., Vol. 5, p800 (1994)						
当初、核酸関連物質	質・糖鎖・天然 [。]	物等の分析に	.用いられ7	ていたが、	特に4-Ni	itroaniline(‡ Ir	<mark>naging MALDI</mark> に用いられるようになった(<mark>2013</mark> 論文)。 ⊤						
Dithranol 1,8- Dihydroxy- 9[10H]- anthracenone	C14H10O 1143-38-0	3 226 .06) (226.2	5299 (27)	HOO	OH HC	онон	Peter Juhasz, Catherine Costello "Generation of large radical ions from oligometallocenes by matrix-assisted laser desorption ionization" Rapid Commun. Mass Spectrom., Vol. 7, p343 (1993) 100 <u>±</u> <u>±</u> <u>±</u> <u>±</u> <u>±</u> <u>±</u> <u>5</u>						
Quinizarin ,4- lihydroxyanthraquinone C14H8O4 81-64-1 240.04226 (240.211)				0.04226 <i>40.211)</i>		50 Data acquired : 25 Nov 1990 (Unpublished) M ²⁺ 2M ⁺							
9-Nitroanthra	cene	C14H9NC 602-60-8) 2 22 3 3 (22	3.06333 23.227)			0 20000 40000 60000 m/z 80000 100000 120000						
"9- ACA " 9-Anthraceneca acid	ırboxylic	C15H10O 723-62-€)2 222 5 (22	2.06808 22.239)		о _т он	Xiaodong Tang, Peter Dreifuss, Akos Vertes "New matrices and accelerating voltage effects in matrix-assisted laser desorption / ionization of synthetic polymers" Rapid Commun. Mass Spectrom., Vol. 9, p1141 (1995)						
Anthracene誘導体 検出が行われた。特 9-ACAは、5-MSAと	に属する。特(に9-Nitroanth このmole比(5:	にDithranolは raceneは、Tr 2)混合で"Su	、主に合成 ansferabl per 9-AC/	式高分子の le protonき A"と呼び、)分析にF を持たなし Syntheti	用いられ、Silve い事を逆に利用 c Polymerに遃	er Trifluoroacetate (Cation Donor)を添加し、Polystylene等の 引し、Radical Ion生成 (例: Oligometallocene)が期待できる。 極応 (1995論文)。						
"HPA" 3- Hydroxypicolinic acid	blinic C6H5NO3 139.02694 (139.109)			CO N∕	юн ј ^{он}	Kuang J. Wu, Anna Steding, Christopher H. Becker "Matrix-assisted laser desorption time- of-flight mass spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix" Rapid Commun. Mass Spectrom., Vol. 7, p142 (1993) Noah Christian, Steven Colby, Lori Giver, Chris Houston, Randy Arnold, Andrew Ellington, James Reilly "High resolution matrix-assisted laser desorption/ionization time-of-flight analysis of single-stranded DNA of 27 to 68 nucleotides in length" Rapid Commun. Mass							
核酸関連物質(DN	A,RNA)測定(こ多く用いられ 	<u>,る。</u> 一			Spectrom., voi.	9, ploti (1999)						
" PA " (Picolinic acid)	C6H5NO 98-98-6	2 123.03 (123.1	5.03203 23.109) COOH N COOH										
PAは 337,355nm で In-Source Decay	に強い吸光度 <mark>v. Top Down</mark>	がないため、c Proteomics	co-matrixと にも用いら	として用い られた。	られる場	合が多い。元	来は核酸関連物質分析で試用されたが、特に1,5-DANとの混合						
"APA" 3-Aminopicolinic acid	PA" minopicolinic C6H6N2O2 1462-86-8					N. I. Tarane matrix for la Spectrom, V	enko, K. Tang, S. Allman, L. Ch'ang, C. Chen "3-aminopicolinic acid as a aser desorption mass spectrometry of biopolymers" Rapid Commun. Mass Vol. 8, p1001 (1994)						

	latr i	X	List	fo	r 337(3	55) I	nm	(8/	25)	nttp://www.first-r	ns3d.jp/	ms ⁸ d
	Koichi	F anaka	Laborato	ry of	Advanced	I <mark>S</mark> cie	ence a	nd T e	echnology	SHIMA	DZU	FIRST Program
Name	Empir. I	F orm. No.	Monoiso. Ma (Aver. Mas	ass (s) ¹⁾	Structur	re				Reference(s)		
3-Aminopyrazine 2-carboxylic acid	C5H5N 5424-(13O2)1-1	139.038 (<i>139.11</i>)	18 2)		CH K CH K Sj	Cuang J. ime-of-f iltraviole Claus Sc iomopol spectrom	. Wu, A flight m et-sensit chneider lymer o netric re	Anna Steding, Ch ass spectrometry tive matrix" Rapi r, Brian Chait ' oligodeoxyribonuc sponse" Org. Ma	nristopher H. Becker "Ma of oligonucleotides using id Commun. Mass Spectrom 'Matrix-assisted laser desc cleotides. Influence of bas ss Spectrom., Vol. 28, p135	itrix-assisted la 3-hydroxypicol: 1., Vol. 7, p142 prption mass sp se composition (3 (1993)	iser desorption inic acid as an (1993) pectrometry of 1 on the mass
特にMALDI黎明期に	¹ こ、核酸関連	物質測え	まに試用され	,t:.	1							
"DPB"	C 16 H 14	2	. 06 .10955				Shan assis	non Co ted lase	ornett, Michael D r desorption" Ana	ouncan, Jonathan Amster al. Chem., Vol. 65, p2608 ("Liquid mixtur 1993)	res for matrix-
1,4-diphenyl- 1,3-butadiene	538-81-8	(.	206.282)		<u> </u>	David Schriemer, Randy Whittal, Liang Li "Analysis of Structurally Com Polymers by Time-Lag Focusing Matrix-Assisted Laser Desorption Ionization Tr of-Flight Mass Spectrometry" Macromolecules, Vol. 30, p1955 (1997)						
元来、1,4-diphenyl てNon-polar polyme	-1,3-butadier r分析(AgNO	neは、5 I ₃ 添加で	32nm, 337n 注)等に用いら	mレ- かれた	ーザ光を用い :。	۰、3-NE	BA, Gly	ycerol	等に溶解させた	≤液体Matrixとして使用	されている。そ	その後、極め
"IAA"	C11H9	NO ₂	187.063	33	[,	сн=Сн	ICOOH	Pa Sy	ul Danis, Dane H nthetic Organic	Karr "A Facile Sample Pr Polymers by Matrix-a	reparation for the ssisted laser	he Analysis of Desorption /
trans-3-Indoleacrylic acid	29953-	71-7	(187.195	5)		Ionization" Org. Mass Spectrom., Vol. 28, p923 (1993) Paul Danis, Dane Karr, Yansan Xiong, Kevin Owens "Me Analysis of Hydrocarbon Polymers by Matrix-ass Desorption/Ionization Time-of-flight Mass Spectrometry" Ra Mass Spectrom., Vol.10, p862 (1996)						ethods for the ssisted Laser apid Commun
主に合成高分子の	 分析に用いら	れる。					· · · · · · · · · · · · · · · · · · ·	!				
2-Amino-5- nitropyridine	e-Amino-5- hitropyridine C5H5N3O2 4214-76-0			18 2)	O ₂ N	LNH₂	Mich laser Chen	nael Fitz desorpt n., Vol.	zgerald, Gary Par tion/ionization ma 65, p3204 (199	r, Lloyd Smith "Basic ma ass spectrometry of proteins 3)	atrixes for the rest of the stand oligonucle	matrix-assisted eotides" Anal.
特にMALDI黎明期	に、 様々なBa	isic Ma	.trix候補30種	i 類以	」 人上の中の1つ	っとして	こ試用さ	きれた。	その中でoligo	nucleotideに最も良い	Matrixに選ば	れた。
2-amino-4-meth nitropyridine 2-Amino-5-nitro-4-	ıyl-5- ∙picoline	C6H 2190	17N3O2 15 (15) (15)		3.05383 53.139)	O₂N∽		·NH ₂	Michael Fitzger matrix-assisted and oligonucleo	rald, Gary Parr, Lloyd Sm laser desorption/ionization tides" Anal. Chem., Vol. 6	nith "Basic mass spectrome 5, p3204 (199	atrixes for the etry of proteins (3)
特にMALDI黎明期	に、様々なBa	isic Ma	.trix候補30積	i類以	」 上の中の1つ	っとして	こ試用さ	きれた。				
Coumarin	C9H6C 91-64-)2 5	146.036 (146.14.	78 3)		1_ 0	T m V I	 T-W. Chan, A. Colburn, Peter Derrick, Derek Gardiner, Michael Bowde "Suppression of matrix ions in ultraviolet laser desorption: Scanning electrom microscopy and raman spectroscopy of the solid samples" Org. Mass Spectrom Vol. 27, p188 (1992) I.K. Perera, S. Kantartzoglou, P.E. Dyer "Coumarin laser dyes as matrices for 				
Coumarin 120 C10H9NO2 26093-31-2 175.06333 (175.184) H2N 7-amino-4- methylcoumarin 26093-31-2 175.184) H2N					H ₂ N	.0 — 0 СН ₃) S 1 1 (natrix a Spectron Yuqin D Liang Li analysis (1997)	ussisted UV laser n. Ion Processes, " Dai, Randy M Wh i "Matrix-assiste of monosulfated	desorption/ionization mass Vol. 137, p151 (1994) nittal, Craig A Bridges, Yu ed laser desorption ionizati d oligosaccharides" Car	s spectrometry kihiro Isogai, (on mass spectr bohydr. Res.,	[°] Int. J. Mass Ole Hindsgaul, ometry for the Vol. 304, p1
イオン化効率向上T 測定に有用。その他、	ag物質として 、Coumarin:	も使わ; 2, Cour	れる。官能基 marin 47, C	の組 oum	し み合わせによ arin 152, Cc	よって、 oumar	. 様々な rin 175	〕 "Cour う 等の	marin XXX"がな 検討が報告され	ある。 Coumarin 120 は いている。 	Glycosph	ingolipid
Esculetin 6,7-Dihydroxyco	umarin	C 9 305	H6O4 5-01-1	17 8 (1)	8.02661 78.142)	но но) _ 0	Klaus Schneide spectrometry of base compositi Spectrom., Vol.	r, Brian Chait "Matrix-a: f homopolymer oligodeoxy on on the mass spectror 28, p1353 (1993)	ssisted laser de ribonucleotides netric response	esorption mass s. Influence of e" Org. Mass
Coumarin derivativ	/eの一種。核i	酸関連	物質等の分析	斤に用	肌られた。							
9-Aminophenar 9-Phenanthrenamin	ithrene e	C14 947	H 11 N ?-73-9	19 ; (19	3.08915 93.244)	H₂N	E. A. Stemmler, R. L. Hettich, G. B. Hurst, M. V. Buchanan "Matrix assisted laser desorption/ionization Fourier-transform mass spectrometry of oligodeoxyribonucleotides" Rapid Commun. Mass Spectrom., Vol. 7 p828 (1993)					anan "Matrix- is spectrometry ectrom., Vol. 7,
核酸関連物質等の	分析に用いら	れた。ロ)HBよりもFra	agme	entationが多い	い。						

THAPは、当初は核酸関連物質分析に用いられたが、後に糖鎖や脂質測定等にも用いられるようになった。

元来は、MALDIイオン源・Sector(磁場)型MSで糖鎖を安定的に測定するため開発されたLiquid Matrixの一種(1996論文)。

その後、固体MatrixよりもSoft イオン化能力(ASMS2008/2009)、3-AQラベル化(化学修飾)・高感度化能力(2011,2012a論文)、液状であるため定量 性・再現性の高さ、適度な表面張力・液滴収縮による 最大1万倍高感度化(2012e論文, G₂/CHCA,G₃/CA濃縮写真参照)、有機溶媒気化後に疎水性化合 物が辺縁に残余・液滴表面中心に親水性化合物が集約(不純物分離による不純物耐性の高さ)(右中写真)、不純物耐性の高さ、等々の特長を活かし、糖鎖 (3-AQラベル化により構造情報が豊富に得られる)(2012b論文)に限らず、(翻訳後修飾)ペプチド/タンパク質(2013論文)、(極性)合成高分子(右中PMMA data)等々、 幅広く活用されている。

なお、Laser Desorption(/Ionization)によるGraphiteイオン化とOrthogonal TOFを組み合わせたMS実験から、Fullereneが発見された、と言われて いる(Richard Smalley, Nobel Prize in Chemistry 1996 "Discovering the Fullerenes" 受賞講演より)。

MALDI M	atr Koichi	ix L Tanaka	Labora	t for 3 atory of A	337(3 dvance	3 55) nn d S cience	n (1 e and `	3/2 Techn	5) ology	http://www	IMADZU	
Name	Empir. CAS	Form. No. (lonoiso. Aver. M	Mass S	tructu	re				Reference	e(s)	
K ₄ [Fe(CN) ₆]/ glycerol	N) ₆]/				Peter Zöllner, matrix system hydrophobic co Peter Zöllner, (mass spectrom (II) complexes (1007)			Jilner, Erich Schmid, Günter Allmaier "K4[Fe(CN)6]/glycerolA new liquid system for matrix-assisted laser desorption/ionization mass spectrometry of obic compounds" Rapid Commun Mass Spectrom., Vol. 10, p1278 (1996) llner, Gerald Stübiger, Erich Schmid, Ernst Pittenauer, Günter Allmaier "MALDI ectrometry of biomolecules and synthetic polymers using alkali hexacyanoferrate plexes and glycerol as matrix" Int J Mass Spectrom. Ion Proc., Vol. 169/170, p99				
SLDにおいて Glycerii	n と混合す	-るCo Pov	vderを無	無機化合物に	こ置き換え	えた場合に	相当す	る。				
"POPOP" 1,4-di-(2-(5- phenyloxazolyl)) benzene 1,4-bis(5-phenyl-2- oxazolyl)benzene Polymer-Assisted Lar	C	24H16N 1806-34	I2O2 I-4	364.121 (364.39) n (PALDI)用	. 18 6) Matrix <i>C</i>		-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ø	Paul Danis, Dan "Methods for the Matrix-assisted La Mass Spectromet Vol.10, p862 (19 Andreas Woldegi- Johan Roeraade laser desorption spectrometric an polystyrenes and Mass Spectrom, V	e Karr, Yansan Xiong, Kevin Owens Analysis of Hydrocarbon Polymers by aser Desorption/Ionization Time-of-flight ry" Rapid Commun Mass Spectrom., 1960 orgis, Peter Löwenhielm, Anders Björk, "Matrix-assisted and polymer-assisted / ionization time-of-flight mass nalysis of low molecular weight polyethylene glycols" Rapid Commun. /ol. 18, p2904 (2004)	
"Proton spong "DMAN" N,N,N',N'-Tetramethyl naphthalenediamine	je" I-1,8-	C14H1 20734-	1 8N2 .58-1	214 .147 (214.30	' 00 6)		Ja Pr So Re M Cl	innes Step roton trai oc., Vol. ohit Shro latrix for hem., Vo	phenson nsfer rea 118, p73 off, Ales the An 1.81, p79	Jr., Scott McLuck actions involving m 390 (1996) s Svatos "Proton S nalysis of Metabol 954 (2009)	ey "Ion/ion reactions in the gas phase: nultiply-charged proteins" J. Am. Chem. ponge: A Novel and Versatile MALDI ites Using Mass Spectrometry" Anal.	
強塩基性のMatrix。De	eprotonal	ted Ion生	成に優れ	າ. Negative	Mode 7	ではMatrix由	! 来イオ	ンの検	出が極	めて少ない。 Me	tabolomics用に期待される。	
"DCTB" 2-[(2 <i>E</i>)-3-(4- <i>tert</i> -Butylj enylidene]-malononitri	phenyl)-2 ile	2-methylp	rop-2-	C 17H1 300364	8N2 -84-5	250.14 (250.3	700 38)	tBı	ı-(H₃Ç NC ≻ CN	Polystylene <mark>500k</mark>	
Christina Siedschlag, Hein Wolff, Jochen Mattay [60]fullerene by photoinduc Syntheses of 1-substituted Tetrahedron, Vol. 53, p3587 Mark Wyatt, Bridget "Characterization of Variou Assisted Laser Desorption/ Mass Spectrometry Butylphenyl)-2-methylprop-	rrich Luftm "Functio ed electron 1,2-dihydrot ' (1997) Stein, Ga is Analytes /Ionization and 2- -2-enyliden	nann, Christ onalization transfer (PE o[60]fulleren areth Brer : Using Mat Time-of-FI: -[(2E)-3-(4-t e]	tian of ET): nes" nton trix- ight tert-	M+	Matri DC	ix: CTB 2M⁺	Polyst (Ac 3M ⁺	tylene celeratio	40k on Volta 4M ⁺	age:25kV) x5 5M⁺	40000 m/2 60000	
(2006) Shin-ichirou Kawabata, S Tanaka "Stable Ion For MALDI and Their Appli Substances" 16P-039 (MSS	Shinichi lw rmation Te ications oi SJ2010)	voi. 78, p ramoto, Ko echniques v n High M	ichi with lass		Tet	traphenyl	butac	diene		hasheshaan hada karaan		
DHBやDithranolと異な 授受によってイオン化 えられている。 (疎水性合成) polyr Fullerene (derivative), 等々の分析に多用され での測定も行われてお ン化が可能といえる。	なり、DCT い行われ mer, Org Inorganic る。Refle	rBは 電子 れていると ganometal c Compou ectron mc て <mark>Soft</mark> なっ	<mark>-の</mark> :考 llic, und ode イオ	5(- DP(=MA			00 <i>m</i> .	/z 150 表会"が		200000 乙佰向がある京	Axima	
Solvent-freeでの使用	も検討され	れている。		は困難である	るが、 DC	、 TBを用いる		とう M.V	V.:500	k測定も可能であ	のった。(MSSJ2010)	
5-nitrosalicylic acid 試料Polyesterに対し、 も使用。	C C	7 H5NC 96-97-9 ted lonをF)5 1	83.01677 (<i>183.118</i>) eする能力が	0₂N ^		J. Gui "Ioniz (MAL Daiki and C decay Mass	ttard, J. C cation of .DI)" Pro Asakawa CO–N bo mass spe Spectrom	C. Blais, synthet oc. 45th a, Mitsu onds du ectromet n., Vol. 2	G. Bolbach, A. Bru ic polymers in ma ASMS Conf. Mass o Takayama "Spec ring matrix-assiste try with 5-nitrosalic 25, p2379 (2011)	not, M. Tessier, E. Marechal, J. C. Tabet trix-assisted laser desorption ionization Spectrom. Allied Topics, p840 (1997) cific cleavage at peptide backbone $C\alpha$ – C d laser desorption/ionization in-source ylic acid as the matrix" Rapid Commun.	

MALDI **Matrix List** for 337(355) nm (14/25)

http://www.first-ms3d.jp/

Koichi Tanaka Laboratory of Advanced Science and Technology 🕀 SHIMADZU

Name		Empir. Forn CAS No.	n. Monoiso. Mas (Aver. Mass)	Structure Structure	Reference(s)
nor-harman 9 <i>H</i> -pyrido[3,4-b] ndole		C 11 H 8 N 2 244-63-3	168.0687 (168.195)	5 H	Hiroshi Nonami, Shinsaku Fukui, Rosa Erra-Balsells "β-Carboline Alkaloids as Matrices for Matrix-assisted Ultraviolet Laser Desorption Time-of-flight Mass Spectrometry of Proteins and Sulfated Oligosaccharides: a Comparative Study Using Phenylcarbonyl Compounds, Carbazoles and Classical Matrices" J. Mass Spectrom., Vol.32, p287 (1997)
Harmane	C1 43	2 H10N2 86-84-0	182.08440 (182.221)	N H H	 Koichi Tanaka, Hiroshi Nonami, Yuko Fukuyama, Rosa Erra-Balsells "β- Carbolines as Matrices for MALDI ToF-MS(/MS) in Positive and Negative Modes" WP222 (ASMS1998) Hiroshi Nonami, Koichi Tanaka, Yuko Eukuyama, Rosa Erra-Balsells, "β-Carboline.
Harmine	C 13	H12N2O 42-51-3	212.09496 (212.247)	H ₃ CO	Alkaloids as Matrices for UV-Matrix assisted Laser Desorption/Ionization Time-of- flight Mass Spectrometry in Positive and Negative Ion Modes. Analysis of Proteins of High Molecular Mass, and of Cyclic and Acyclic Oligosaccharides" Rapid
Harmol	C12	2 H10N2O 87-03-6	198.07931 (<i>198.221</i>)	HO	Commun. Mass Spectrom., Vol. 12, p285 (1998) Hiroshi Nonami, Feiyue Wu, Randolph Thummel, Yuko Fukuyama, Hidenobu Yamaoka, Rosa Erra-Balsells "Evaluation of pyridoindoles, pyridylindoles and pyridylpyridoindoles as matrices for ultraviolet matrix-assisted laser desorption/
Harmaline	C13	H14N2O 04-21-2	214.11061 (214.263)	H ₃ CO	ionization time-of-flight mass spectrometry" Rapid Commun. Mass Spectrom. Vol. 15, p2354 (2001) Mariana Barboza, Vilma Duschak, Yuko Fukuyama, Hiroshi Nonami, Rosa Erra-
Harmalol	C12	H12N2O 25-57-5	200.09496 (200.236)	HONNH	Balsells, Juan Cazzulo, Alicia Couto "Structural analysis of the N-glycans of the major cysteine proteinase of Trypanosoma cruzi Identification of sulfated high- mannose type oligosaccharides" FEBS Journal, Vol. 272, p3803 (2005) "MALDI-MS Technical Reports" No.08
¹⁰⁰] Lipid				 I	WP222 (ASMS

脂質(クロロホルム溶解可)・ペプチド・糖質・核酸関連物質 一斉分析例

β-Carbolines	m.p. (°C)	$\begin{array}{c} \textbf{Absorption} \\ \lambda_{max}(\log \epsilon) \\ (nm)(mol^{-1}cm^{-1}) \end{array}$	∆pKa H ₂ O	∆pKa EtOH	∆pKa MetCN
nor-Harmane(nH)	198-200	350 (3.59)	5.5	6.9	8.5
Harmane	237-238	350 (3.72)	4.9	6.2	7.3
Harmine	261(dec)	336 (3.69)	4.6	6.4	7.5
Harmol		338 (3.77)	6.6	6.6	7.6
Harmaline	232-234	338 (4.42)	13.6	13.0	14.1
Harmalol	212(dec)	342	11.8	12.0	13.7

Ref: ∆pKa = [pKa*(Lower Singlet Excited State)] – [pKa(Ground State)]

 nor-Harmane Solubilities / Stabilities (>1 Month) to Several Solvents

 100%H20
 100%TFA
 100%ACOH
 MetOH
 CH₃CN
 Acetone
 THF
 Toluene
 CHCl₃
 CH₂Cl₂

 Little / Y
 Y/Y
 Y/Y
 Y/Y
 Y/Y
 Y/Y
 Y/Y
 Y/Y
 Y/Y

Only these compounds that possessed indole N–H and pyridine nitrogen groups in a 1–4 relationship demonstrated good matrix properties with a nitrogen laser. (2001 hac)

DNA/RNA試料はCation付加分子が生成し易く、HPAをMatrixとして用いる(上図青色)と [M-nH+(n-1)Cation] イオンが検出され易いが、Halmalineを用いると [M-H] が強度高く得られた例

植物毒アルカロイドであるβ-Carbolineの基礎研究からMatrix開発へと 進展。他の大部分のMatrixが溶けないChloroform・etherを含む有 機溶媒に幅広く溶解可能なため、脂質や(非極性)合成高分子にも適応 可能。強力なproton acceptor能力を活かし、中性糖からも[M-H]イ オン生成可能。硫酸糖の測定にも有効(2005論文)。nor-Harmanの 他に、メチル基等が付加したHarmane, Harmine, Harmol, Harmaline, Harmalol も Matrixとして有効。関連して、Pyridoindole, Pyridylindole, Pyridylpyridoindole(計33種類)(左構造式参照)のMatrix としての効果を検証(2001論文)。

.... -4 MA

.... 1.44 **c**: .

MALDI	K K	oichi Tan	aka La	aborate	ory of Ad	37(35 vanced	i 5) n Scien	m (' ce and	Tech	nology	SHIMADZU		
Name		Empir.	Form.	Mo (A	onoiso. Mas	s 1) S	truct	ure			Reference(s)		
D-Arabinosazo	one	C17H20	N4O: -	3	328.1535 (<i>328.366</i>)	4	L	Peng C Matrice: Spectron Susan		Chen, Andrew Baker, ces for the Matrix-As cometry of Carbohydrate Wheeler, David Har	Milos Novotny "The Use of Osazones a ssisted Laser Desorption / Ionization Mas es" Anal. Biochem., Vol. 244, p144 (1997) vey "Negative Ion Mass Spectrometry o		
Neutral sugarの sulphated glycans でイオン化可能で、 能測定に向いている	みならず 測定に 低いfra る。	ず、negative :適している。 agementatio	mode , DHBJ on∙TOI	におい ⁻ におい ⁻ いも低 FMSに	いて sialylated, 低いレーザ強度 における高分解			OH OH 2OH	Sialylated Carbohydrates: Discrimination of N-Acetylneuraminic Acid Linkages by MALDI-TOF and ESI-TOF Mass Spectrometry" Anal. Chem. Vol. 72 p5027 (2000) Susan Wheeler, David Harvey "Extension of the In-Gel Release Method fo Structural Analysis of Neutral and Sialylated N-Linked Glycans to the Analysis of Sulfated Glycans: Application to the Glycans from Boving Thyroid-Stimulating Hormone" Anal. Biochem., Vol. 296, p92 (2001)				
"MTB" 2-mercaptober	nzothi	azole			C7H 149-	C7H5NS2 149-30-4			534 71)	SH SH	Naxing Xu, Zhi-Heng Huang, J. Throc Watson, Douglas Gag "Mercaptobenzothiazoles: A new class o matrices for laser desorption ionizatio		
" CMTB " 5-Chloro-2-me	rcapt	obenzothi	iazole		C7H4	C7H4CINS2 200 5331-91-9 (20			7 37 96)		mass spectrometry" J. Am. Soc. Mas Spectrom., Vol. 8, p116 (1997)		
^{[2-mercaptobenz}	zothiaz	cole(MTB)よ	りもCN	ITBが有	↓ 有用」 糖鎖(High-Mannose型)・Glycoper			ycope	」 ptide等様々な化合	物の分析に試用される。			
Terthiopher	erthiophene C12H8S3 1081-34-1			24 (24	7.97881 48. <i>387)</i>	17881 387)			Tr. Ion Sp Ste ion de	 Tracy McCarley, Room McCarley, Patrick Limbach "Electron-Transfer Ionization in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry" Anal. Chem., Vol.70, p4376 (1998) Stephen Macha, Tracy McCarley, Patrick Limbach "Influence of ionization energy on charge-transfer ionization in matrix-assisted laser desorption/ionization mass spectrometry" Analytica Chimica Acta, Vol. 397, p235 (1999) 			
Charge-transfer ionization用のMatrix。								39	97, p235 (1999)				
Anthracene	C14H10 178.0 120-12-7 (178.0)			78.07 (178.2	7 825 29) [25			McCarle trix-Assi 0, p4376 en Macha e analys ed laser Spectron	ey, Robin McCarley, F isted Laser Desorption 5 (1998) a, Patrick Limbach, Phi is of low molecular w desorption/ionization t n., Vol. 11, p731 (200	Patrick Limbach "Electron-Transfer Ionizatio /Ionization Mass Spectrometry" Anal. Chem lip Savickas "Application of nonpolar matrice reight nonpolar synthetic polymers by matrix time-of-flight mass spectrometry" J Am So 00		
幾つものAnthrace	ene de	rivativesがr	natrixと	して検討	討されてい	るが、Antl	nracene	e自身が	™matrix	くとして用いられた例			
(4-Hydroxybe malonitrile Polyacrylnitrile等	enzyl の合成	idene) 這分子測定	C10 37	0 H6N /85-90 。	2 0 170.04801 -8 (170.167)				CN Katharina Linnemayr, Philipp Vana, Günter delayed extraction matrix-assisted laser de time-of-flight mass spectrometry of polyacry synthetic polymers with the matrix 4-h malononitrile" Rapid Commun Mass Spectro (1998)				
			1					OH	Meeters	£ Miles Newstern (9)	Antic Actived Learning / Learning		
Spermine	C 1(0 H26N4 1-44-3	(202	2.2157 (2. <i>340)</i>	5		>NH₂ ∠NH₂	Mass S a Co-n John A MS U	Spectron natrix" Asara, Jo sing the	netry of Acidic Glycood J Am. Soc. Mass Spect ohn Allison "Enhanced Tetraamine Spermine	and the second state of th		
主に、他のLaser に[M+Cation] ⁺ 低減 特に DNAのhelic	光吸収 に有刻 al strue	可能なMatri り。 ctureを安定	xと共に させる作	加える(F用があ	Co-matrixと ちる、と考え	こして用い られている	 る。特 る。	p2866 Anne I for the Oligon	(1999 Distler, . Matrix nucleotid) John Allison "5-Metho -Assisted Laser Desorp les" J Am. Soc. Mass S	oxysalicylic Acid and Spermine: A New Matri otion/Ionization Mass Spectrometry Analysis o Spectrom., Vol. 12, p456 (2001)		
α-cyano-fer	ulic	acid	C11H -	9 NO 4	21 9 (21).05316 9.193)	Cł O	H=C(CN)COOH 3	Deng Huimin, Zh Zhao Shankai "S Cyano Ferulic Ac Chinese Universit	a Qingmin, Li Jun, Shao Weiyan, Lai Zhihui, tudies of Applications of a New Matrix α- id in MALDI-TOFMS" Chemical Research In ies (2001)		
タンパク質、核酸	関連物	質、糖鎖、特	Cdext	ranの測	一にの一般の	されている)o						
5-ethyl-2- mercaptoth	iazo	le	C5H	7 NS 2	14: (14	5.00199 (5.246)		s ^N	SH	N. Prasada Raju, Ramulu, M. Pardl matrix for matrix- spectrum of analy	N. Prasada Raju, Shama P. Mirza, M. Vairamani, A. Raghu Ramulu, M. Pardhasaradhi "5-ethyl-2-mercaptothiazole as matrix for matrix-assisted laser desorption / ionization of a broad spectrum of analytes in positive and negative ion mode" Rapid		
ペプチド、糖鎖、脂	質、合	成高分子等	、様々な	な化合物	勿に適用。						μοτιοπ., voi. 13, μ18/9 (ΔΟΟΙ)		

MALDI **Matrix List** for 337(355) nm (17/25)

http://www.first-ms3d.jp/

Koichi Tanaka Laboratory of Advanced Science and Technology

SHIMADZU

Name	Empir. Form. CAS No.	Monoiso. Mass (Aver. Mass) ¹⁾	Structure	Reference(s)
" 9-AA " 9- Aminoacridine	C13H10N2 90-45-9	194 .08440 (194.232)	NH ₂	Rachal Vermillion-Salsbury, David Hercules "9-Aminoacridine as a matrix for negative mode matrix-assisted laser desorption/ionization" Rapid Commun. Mass Spectrom., Vol.16, p1575 (2002) Christopher Cerruti, Farida Benabdellah, Olivier Laprévote, David Touboul, Alain Brunelle "MALDI Imaging and Structural Analysis of Rat Brain Lipid Negative Long with 0 Aminoacriding Matrix" Appl. Chem. Vol. 24, p2164 (2012)

Takahiro Harada, Akiko Yuba-Kubo, Yuki Sugiura, Nobuhiro Zaima, Takahiro Hayasaka, Naoko Goto-Inoue, Masatoshi Wakui, Makoto Suematsu, Kengo Takeshita, Kiyoshi Ogawa, Yoshikazu Yoshikazu Yoshida, Mitsutoshi Setou "Visualization of Volatile Substances in Different Organelles with an Atmospheric-Pressure Mass Microscope" Anal. Chem., Vol. 81, p9153 (2009)

Akiko Kubo, Mitsuyo Ohmura, Masatoshi Wakui, Takahiro Harada, Shigeki Kajihara, Kiyoshi Ogawa, Hiroshi Suemizu, Masato Nakamura, Mitsutoshi Setou, Makoto Suematsu "Semi-quantitative analyses of metabolic systems of human colon cancer metastatic xenografts in livers of superimmunodeficient NOG mice" Anal. Bioanal. Chem., Vol. 400, p1895 (2011)

B: Butylamine (C4H11N: 109-73-9)は、単体ではMatrixとしての働きが(十分)行えない

MALDI **Matrix List** for 337(355) nm (19/25)

http://www.first-ms3d.jp/

🕀 SHIMADZU

Koichi Tanaka Laboratory of Advanced Science and Technology

強度を縦軸として 各Matrixの強度分布を 表している G₃CAで中心の強度が低下し ているのは、溶媒乾燥時に不純物が集積 したため、と考えられる

3-AQ/CHCAと同様、Liquid Matrixの特徴を有する。特に 硫酸化糖鎖・シアロ糖鎖等の酸性糖鎖のソフトなイオン化と、糖鎖全般の高感度化に適切。 Plate上で液状を保てるため、前処理ステップを簡略化するためのOn-Target Enzymatic Digestion も試行されている。

3000

٥ 1000

DHB and G₃CA

2000

Negative-ion mass spectra of Ribonuclease B digests with

m/z

■ 105-140 70-105

35-70

0-35

般にLiquid Matrixは、通常のSolid Matrixと比較し 液滴に厚みと丸みをおびている(3-AQ/CA写真参照)ため、通常のMALDI-TOF型では イオン散 乱と飛行時間の広がりによる 感度と分解能・精度の低下を招く事が危惧されるため、lon SourceとTOF-MSがdecoupleされた 例えば MALDI-QIT-TOF型に適している。(「Sample・Matrix乾固状態と主にMALDI-TOF感度・分解能の関係(2/2)」参照)

"CI-CCA"	C10H6CINO2	207 .00885	Q	Thorsten Jaskolla, Wolf-Dieter Lehmann, Michael Karas "4-Chloro-α- cyanocinnamic acid is an advanced, rationally designed MALDI matrix" Proc.					
4-chloro-α- cyanocinnamic acid	69727-07-7	(207.613)	CI CN CN	Nat. Acad. Sci., Vol. 105, p12200 (2008)					
CHCAと比較し、(様々なbasicityのpeptideに対する)Sequence coverageの大幅向上が期待できる(337m Laser使用時)。									

MALDI **Matrix List** for 337(355) nm (22/25)

Koichi Tanaka Laboratory of Advanced Science and Technology

http://www.first-ms3d.jp/

peptideを分子イオンとして生成する事に(一部)成功した。

MALDI **Matrix List** for 337(355) nm (24/25)

http://www.first-ms3d.jp/

🕀 SHIMADZU

ns³d

Koichi Tanaka Laboratory of Advanced Science and Technology

ATHAPは、従来のMatrixにアルキル鎖を伸長させた観点からは ADHBと同様であるが、ATHAPは単体でのMatrix効果が十分ある。

Peptideにおける疎水性度を見るSequence Specific Retention Calculator (SSRC) Index による比較では、CHCAを用いても適応困難な hydrophobicityが極めて高い(SSRC>50) peptideでもイオン化が容易で あるため、上図の様に Membrane Proteinの一種:Bacteriorhodopsinの Transmembrane (TM)部分も全て検出できている(ASMS<u>2014</u>)。

右図は、Imaging MALDIを用い Stainless Steel Sample Plateについた 指紋を ATHAPを真空蒸着して計測した一例である。ある脂質関連化合物は 指紋の"山"の部分に、別の化合物は"谷"の部分に 偏在している様子がうかが える。

Data acquired and analyzed by M. Kusano (unpublished)(under FIRST-ms3d project) →

Plate上"指紋"における光学顕微鏡画像(左:コントラストは高くない)と ATHAPを用いた化合物MS代表例(複合脂質)2種類(中、右)の分布 (ポジ・ネガの関係)

Koichi Tanaka Laboratory of Advanced Science and Technology

http://www.first-ms3d.jp/

🕀 SHIMADZU

各マトリックス(0.5mg/mL)の吸収極大波長と吸光度

	CA	pCHCA*	SA	pDHB*	3-AQ	3-AQ/CHCA	3-AQ/CA		
吸収極大波長(nm)※	311	341	325	330	343	338	338		
吸光度(OD)※	64.4	55.8	30.7	12.5	12.8	14.2	12.6		

※波長300nm~500nm間でODが最も高い時の波長と数値を示した

* pCHCA, pDHBにおける"p"は purifiedを意味する

註: 上記は、溶液中での吸光度であり、溶媒気化後の(試料との混合結晶)状態での吸光度とは(一部)異なる

Sample・Matrix乾固状態と主にMALDI-TOF感度・分解能の関係(1/2)

MALDIによるイオン化と最も多く接続されているMSは、Time of Flight (TOF) MSである。

TOFMSでは、Sample Plateに試料を搭載し、Pulse Laser等でイオン化させる。通常、Sample Plateには高電圧High Voltageが印加され そのすぐ右側(下図参照)のElectrodeには0 V (Ground)を印加する。*m/z*値の小さいイオンは(最終到達)速度が速く先に検出器Detectorに 到達、大きいイオンは後から到達、この飛行時間の違いでイオンを分離・検出・測定できる。

イオンは、ミクロレベルで見た試料表面に対し、ほぼ垂直方向(上図では右方向)に向かって発生する。通常、Sample Plate表面は イオン 飛行・検出器方向に対し垂直に設置されており、発生したイオンはSample Plateに印加された高電圧によって加速される。イオンの向かう 方向が 多少垂直方向よりずれていても、Ion Lensによって修正される。

CHCAの様(左上写真参照)にミクロレベルでの凹凸が少なく、薄い試料・Matrix膜が生成できる場合は、上図の様に ほぼ全てのイオンが検出器まで届く。しかも、同じ*m/z*イオンならば(ほぼ)同時に検出器に到達できるため、質量分解能も高い状態での測定が容易である。

DHBやDANをMatrixとして用いた場合、巨大な針状結晶が生成し易く(左上写真参照)、ミクロレベルで見ればイオン生成方向が垂直方 向から大幅にずれる場合が増加し、イオン化部位によっては一部または大部分の生成イオンが検出器に到達できないばかりでなく、イオン の軌道が垂直方向(上図では検出器へ向かう方向)からずれるため、同一m/zイオン同時到達が困難になり、質量分解能も低下し易くなる。

真空中でも液滴状態を保つ 主にIonic Liquid Matrix(例:3-AQ/CHCA、3-AQ/CA)を用いた場合、巨大(直径>1mm)な半球状の液滴 が生成し易く、ミクロレベルで見ればイオン生成方向が垂直方向から大幅にずれる場合が増加し、イオン化部位によっては 一部または大部 分の生成イオンが検出器に到達できないばかりでなく、イオンの軌道が垂直方向からずれるため、同時到達が困難になり、質量分解能の 低下も発生し易くなる。Sample PlateにはHigh Voltageが印加されているが、Sample Plateより離れた特に液滴の頭頂では印加(イオンに とっての加速)電圧が低下する事になり、この効果によってさらに分解能も低下する傾向がある。

通常のTOF-MSでLiquid Matrixを用いる場合、感度・分解能が低下する(Liquid Matrixの利点を十分利用できない)要因になっている。

Sample Matrix乾固状態と主にMALDI-TOF感度・分解能の関係(2/2)

Soft Laser Desorption法 発明 30 周年記念