

最先端プロにおける 診断・創薬技術の展開

(株)島津製作所 田中最先端研究所 革新的前処理グループ 佐藤孝明

診断・創薬技術の展開

1. MS-Imaging

2. Microscopic MS

3. Immuno-Beads MS

MS-Imaging

- 免疫組織化学的解析 →ターゲットの特定、良質の抗体が必要
- 組織形態学的解析

- アミノ酸配列まで決定可能 →検出したタンパク質をMS/MS解析 →翻訳後修飾の解析
- タンパク質の発現量と位置情報
 →がん組織と正常組織の違い

パラフィン切片を用いたダイレクトプロテオーム解析が可能

MSイメージング解析のための前処理

得られたMSシグナルを二次元展開することで 生体物質のマッピングやプロファイリングが可能

Direct analysis of proteins from tissue sections

装置 : AXIMA-QIT マトリックス : DHB

脱パラフィン切片

凍結切片

両方の切片で同じMS peakの検出が可能

MS Imaging Analysis

Sample: Endometrioid adenocarcinoma Storage period: 7 years

HE staining

Multi target imaging

(BIO-MAP)

診断・創薬技術の展開

1. MS-Imaging

2. Microscopic MS

3. Immuno-Beads MS

実験機の概要①構成

プロト機によるこれまでの成果例

10 µ m以下の高空間分解能にて生体分子の局在を視覚化 MSⁿによる生体分子の同定

250x250点でのイメージング

光学顕微鏡

サンプル:マウス小脳
マトリクス:DHB(蒸着)
測定ピッチ:10μm
測定点数:250×250(62,500点)
測定時間:約6時間

MS imaging m/z737

m/z772.5

m/z769.5

m/z798.5

診断・創薬技術の展開

1. MS-Imaging

2. Microscopic MS

3. Immuno-Beads MS

タンパク質のダイナミックレンジ

血清タンパク質の存在比 Dynamic Range: >10¹⁰

Immuno-Beads MS Method

実験系の模式図

Immuno-Beads MS Method

• IP-MS test of 10pmol β-Amyloid(1-38)

IP-MS results of 10pmol β -Amyloid in TBS.

Amyloid peptide signal was detected in control and pre-IP sample. Signal was completely eliminated in IP-sup, and recovered in IP-beads, so this is indicated that IP-MS platform works in good.

-4-

最後に

技術の進歩がサイエンスの進歩 を促進する。最先端プロジェクトで は、次世代質量分析システムの開 発を推進することによって、次世 代の革新的創薬や診断システム 開発に貢献することを目標とした

い。