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1. Introduction

Delayed pulse extraction is commonly used as a method which compensates for
the initial kinetic energy scattering to obtain higher resolving power of time of flight
mass spectrometer (TOFMS) with matrix-assisted laser desorption/ionization
(MALDI). However, the effective mass range of this method is limited and not wide
enough. We have previously developed a new method which expands the effective
range by dividing ions according to their masses before applying pulse voltage. In
this study, we improved the method to further expand mass range by non-linear
field.

2. Methods
2-1. Pre-extraction method
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Figure 1 Extraction method

Figure 1 shows the schemes of a) conventional and that of b) pre-extraction
delayed pulse method. The initial ion velocity is independent of the mass, which is
a feature of MALDI. Therefore the spatial distribution during the delay time is also
independent of the mass without the pre-extraction as in figure 1 a), and each
mass needs to be supplied optimum energy by pulse field. That is, effective mass
range by specific pulse is narrow. On the other hand, by the separation of pre-
acceleration field, the effective mass range of pre-extraction method is wider
(Figure 1 b).
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2-2. Optimum potential distribution
Before the pulse voltage is applied, the electric field £, between sample plate and
1st electrode (extraction electrode) is constant. The potential ¥(x) is expressed as
Vo(x) =V, = Epx (1)
where 7, is the initial sample voltage and x is the distance from sample plate
surface. The flight time ¢ = 0 is defined as the time when ions are generated on the
sample plate surface. When the initial velocity is v, it may have a distribution from
vy -y, to v, +Av,. Thus, the difference in kinetic energy AK between ions which
have initial velocities v, +Av, and v, -Av, is
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where m is the ion mass.
When the pulse voltage is applied at ¢ =t,, ion’s position and velocity are
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respectively, where ¢ is the ion charge. Furthermore Eq. (3) gives mass-to-charge

ratio m/q as m_ By ) ©)
9 2(x=wo)

Here, the difference in distance +Ax between the ions position of initial velocity v,
and v, = Av, is expressed as Avy, from Eq. (3). In the case, the ion which has
the initial velocity v, + Av, obtains additional potential /,(x) at = 1, the difference
in the potential AU is
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When AU compensates for AK, the equation would be
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from Egs. (2) and (6), where AU = AK. And substituting Eq. (5) into Eq. (7) gives

(8)
So, after integrating Eq. (9), we have
) :—F";"’“ In(x=vyto) + V. (9)
When the potential at 7= 7, defined ¥,(x), we can write it as
Vi(x) = Vy (@) 47, (x) =, — E,,{x+ ”"z’“ In(x— vnr")} (10)
from Eq. (9), where V"=V, + V.
Eq. (10) does not include to-charge ratio m/g. Ci by applying

pulse voltage which satisfies Eq. (10), we can compensate any mass ion for initial
kinetic energy difference. However it doesn’t work for time focusing since ions fly at
same velocity in the drift region. Though further compensation is required for the
ideal time focusing, it is clear that the compensation is based on ¥ (x) and the form
should be non-linear.
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3. Results

To demonstrate our postulate, we compared the effective mass range of three
methods by computer simulation and experimental data obtained from linear
MALDI-TOFMS whose length and accelerator voltage were 1.2 meter and 18 kV,
respectively.

3-1. Simulation Results
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Figure 3 shows the scheme of linear
TOF ion source adopted non-linear
field. By setting electrode parameters
as in Table 1, the ion source can
function as a) conventional method, b)
pre-extraction method with linear
potential distribution (method 1), and
c) pre-extraction method with non-
linear potential distribution (method 2).
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Figure 3 Schematic representation
of linear TOF setup

Table 1 Parameters of each electrodes in simulations

oo 1¢t extraction
Sample plate electrode 21 extraction | acceleration
Base | Pulse | Delay | Base | Puise | Delay e‘ec'(':\cj? e‘ec":\:e
KV) | (V) | (ns) | (kV) | (V) | (ns)
Conventional
18.0 | 1200 | 600 | 18.66 - - 5.0 0
method
Method 1 18.0 | 800 | 450 | 17.2 | - - 5.0 [
Method 2 18.0 | 1540 | 730 17.2 830 730 16.0 0
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Figure 4 Resolving power of each method

4. Conclusions

3-2. Experimental Results

Table 2 Parameters of each electrodes in experiments

We measured MS spectra of 7-mix peptides and Sample plate 15t extraction
PMMA to evaluate these methods. Table 2 shows the electrode 2 extraction | acceleration
. electrode electrode
parameters used in the measurements, mostly based Base | Pulse | Delay | Base | Pulse | Delay V) )
on the simulation results from Table 1. Some of them KV) | (V) | (ns) | (kV) | (V) | (ns)
were optimized by experiment. Conventional
Figure 5 shows an MS spectrum of 7-mix peptide and method 18.0 | 1430 | 730 | 1866 | - - 4.7 0
Figure 6 shf)ws the peaks and resu.\vmg power of each Mothod 1 180 | 1050 | 400 | 175 N N 6.0 0
method. It is clear that the effective mass ranges of
method 1 and 2 are wider than the range of Method 2 17.9 | 1750 | 790 | 17.0 | 1000 | 790 165 0
conventional method. ACTH7-38 isotopic peaks were
separated when method 2 was used. Sample: 7-mix peptides
Figure 7 is an MS spectrum of PMMA peaks and Matrix: CHCA
Figure 8 shows the resolving power at each mass. In
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Figure 7 MS spectrum of Poly(methyl methacrylate) (PMMA)

- We developed a new ion source adopted non-linear field to improve the mass range of higher resolving power.
+ In the simulation study, the mass range of new method is 4 times wider than that of conventional method.
+ In the experimental study, the mass range of new method is 2.5 times wider than that of conventional method.
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Figure 8 Resolving power of PMMA peaks with each method




