次世代質量分析システム開発と創薬・診断への貢献

Development of the next generation mass spectrometry system, and contribution toward drug discovery and diagnostics

まず、「質量分析とは何か?理解したい!」方々のために、

質量分析とは?①:様々な分野で役立っている

医学・薬学・ライフサイエンス

疾病診断、臨床、法医学、麻薬捜査、ドーピング、タンパク質解析、 **/**毒物検知、遺伝子·糖鎖·代謝解析、 **薬効・安全性・**薬物動態の確認、合成

反応の最適化、天然物分析、等々

化学合成品•工業•新素材

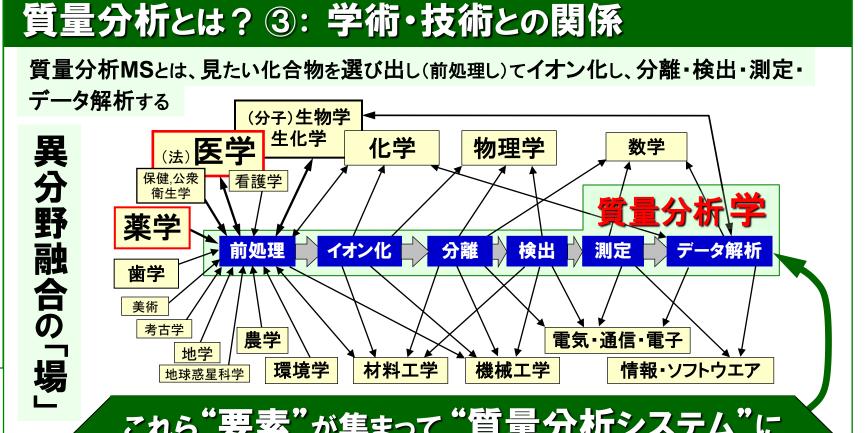
プラスチック等製品検査、金属・無機物・半導体分析、香料分析、ナノテク

素材分析、添加物・不純物・触媒・合成品確認、

工程等モニタリング、等々

環境分析 例: PM2.5, 農薬分析 大気・水・土壌・室内汚染物質分析、環境ホルモン 分析、等々

その他


火星探査車"キュリオシティ"にも搭載

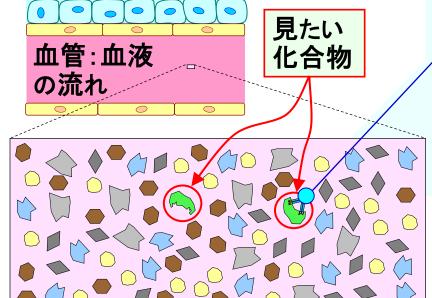
年代測定、**地球外生命**探索、等々

"はやぶさ"が持ち帰った微粒子の分析も

普段 目にする事はないが 重要 すなわち、 「縁の下の力持ち」・「裏方の仕事」をしている

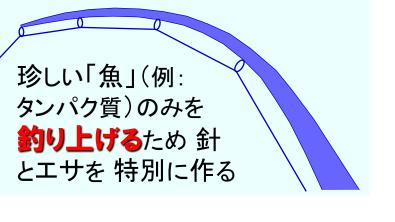
質量分析とは?②:目に見えない分子の質量を分析する 質量分析(Mass Spectrometry: MS)は Q. 質量を量る? A. 例: 天秤はかり ~ 0.000000000000000**1** mg 0.00000001 mg 1mg タンパク質の様な 1mg(砂粒1つ)ほどの 極めて小さい分子1つ1つの「重さ」を量る 重さまで量れる

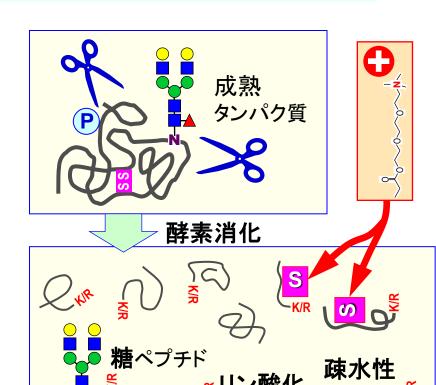
これら"要素"が集まって"質量分析システム"に


(診断用)「質量分析システム」に必要な

前処理とは? 前処理 イオン化 分離 検出 測定 データ解析

例えば、血液中には数万~10数万種類の化合物が含まれており、それら全 てを一度に見る事は困難です。既に分かっている多量のものは無視し、見たい ものだけ「釣り上げる」方法が効率的です。


血管を大河に例えると、前処理とは 何万匹もいる当り前の魚(雑魚)は無視 (針・餌に食いつかない)、数匹しかいない珍しい魚(例:クニマス)を選び出して捕 (捉)える(釣る)ことに似ています。

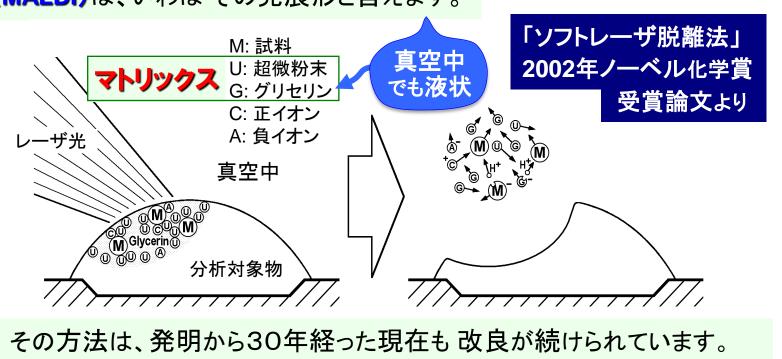

しかし実際には目には見えない世界。その微量の「魚」を見えるようにするた め、超高感度の手法も同時開発しなければなりません。→ イオン化 へ

タンパク質は、(アミノ酸等から比べ ると)巨大です。部品に分解(例:酵素 消化)して 一部のみを見れれば十分 な場合もあります。

分子は、必ずしもイオンになり易い とは言えません。必要な部分に、予 め電気(+,-)を帯びさせることも、 「前処理」の1つです。

イオン化は?

前処理 イオン化 分離 検出 測定 データ解析


常温で固体(・液体)の試料分子に何らかのエネルギー(例:瞬時に多量の熱) を与え、たとえ気化・ガス化できたとしても、イオン化 も達成している、とは限り ません。しかも、イオン化効率は 100個~10万個に1個できる程度です。

その(特に見たいもののイオン化)効率を**劇的に高める**ために (レーザーでイオン 化する場合)試料と混ぜる「イオン化補助剤」がマトリックスです。

質量分析とは? ④: タンパク質:巨大分子をイオンに

タンパク質は、水素・炭素・窒素・酸素等の原子が沢山(1,000個以上) つながった(水素の1万倍以上の大きさ)固体で、分子同士が手をつないで いる中でも 切れ易い部分があるため、壊さずに丸のまま(ソフトに)イオン 化するのは至難のわざでした。

それを初めて可能にしたのが「ソフトレーザ脱離イオン化法」です。現 在 幅広く用いられているマトリックス支援レーザー脱離イオン化法 (MALDI)は、いわばその発展形と言えます。

→ マトリックス液化による超高感度化(100~1万倍) 参照

mass Spectrometer for Crug Ciscovery and Ciagnostics

--- 血液1滴から早期診断・創薬の手がかりを得るために ---

「タンパク質と疾患・早期診断の関係(基本)を理解したい!」方々のために、

ヒトの体は? タンパク質は 極めて重要 Q. ガン等の病気になると? その他 A. 今までに無かったタンパク質 が作られたり、量が増えたり減 ったりする(場合が良く見受けら タンパク質 6~7割: └ それを**量る**ことにより 病気の早期診断、新薬開発、 等が行える(可能性が高い) 例: [医学]疾患マーカー、[薬学]薬物動態

1万倍の高感度・微量が量れるようになると 数万種類ある(血漿 内)タンパク質の 量は 10ケタ以上 もの差がある 1,000 微量検出可 能で初めて <u>1</u> 10億 インターロイキン等 -

がん等の病気発症・治療の経緯 (分かりやすく簡略化している) 発症 健常化 先制医療へ 生涯発症しない場合

> 「健常人でも、毎日数千個のがん細胞 が生まれ潰されている」と言われている

バイオマーカーとは? 疾患など体調の変化によって(量の増減を含め)変化する化合物

全ての質量分析(方法)は、下記の4つの要素技術(いわば質量分析に必要な部品 他の用途にも水平展開可能)から成り立っている

水を除いた人の体の半分以上を形作っているタンパク質は、10万種類以上ある、と言われています。

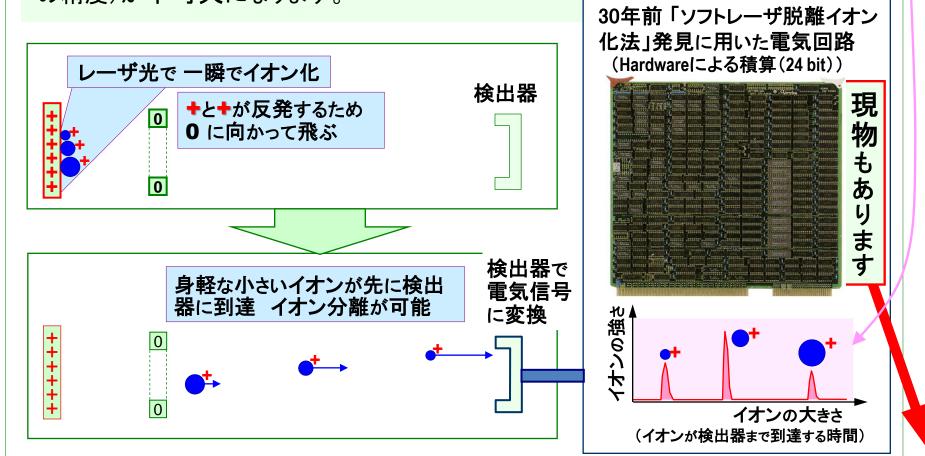
しかも、膨大な量ある物から極微量の物まで。多量あるタンパク質は既知、微量の物は未知の場合

が多く、特に病気の初期・早期は微量です。それを「見る」事ができれば、未知の現象を知る事ができ、

ハードウェアは? 前処理 イオン化 分離 検出 測定 データ解析 ソフトウェアは? 前処理 イオン化 分離 検出 別定 データ解析

イオン化で様々な大きさのイオンができますが、それらが一度にまとめて見え たとしても分かり難い場合が多いと言えます。

病気の解明や早期診断にも役立つはずと期待できます。

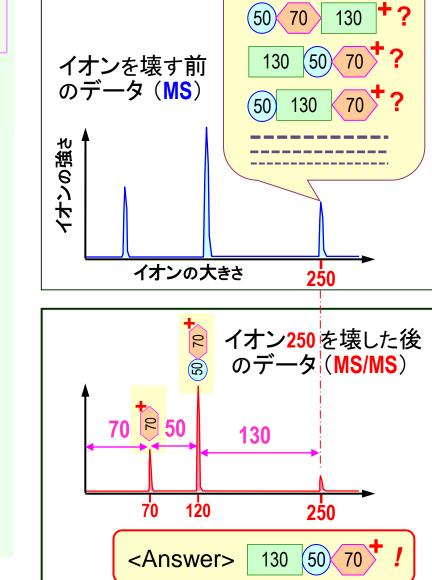

まず、大きさ(小ささ)の順に 分離 し、目に見えないイオンを 検出し 電気信号 にして電気回路で測定する必要があります。

質量分析とは? ⑤: イオンを作り 飛ばして測る

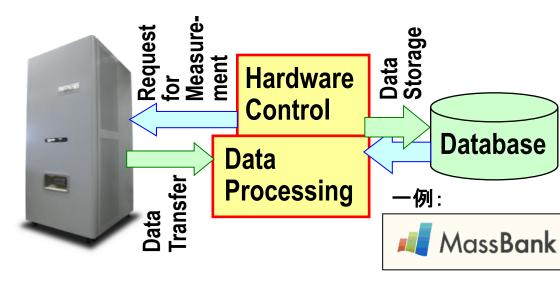
タンパク質は千差万別

イオンは極めて小さいため、天秤で量ることは無理です。1つの方法は イオ ン十一にして、十と十が反発する事を利用し、引っ張る・飛ばす事を行います。

分子は**極小**(極めて身軽)だから、飛行時間は あっ! という間(~1/10,000 秒)。しかも、極小の現象を見るため、高精度の機械部品(ミクロン単位)と、 高感度・超高速測定が可能な検出装置:電気回路(~1/1,000,000,000秒) の精度)が不可欠になります。


ハードウェアによって得られたデータ は、いわば 横軸(イオンの大きさ)と縦軸 (イオンの強さ・存在する数・量)の関係を 表すのみ であり、<mark>データ解析</mark> のための ソフトウェアが必須と言えます。

バイオマーカー解析対象となるタンパク質等


特に構造(中身)まで解析したい場合 は、解析したいイオンのみを選び(例: 右図のイオン250)、壊して生成した (MS/MSデータ)イオンピーク間の関係 を見て 様々な候補の中から(自動で) 最適な解を見つけ出すアルゴリズム、 分かり易い表示(例:3次元表示)が求 められます。

病気に限らず、"ヒト"の体のメカニ ズムは、未だ未知の部分が多い、 と言われています。病気の早期診断等 に役立つバイオマーカーは、予め予想

(仮説の立案が)できない **場合が多く**、しかも個々 人によって異なる場合が あるため、膨大な量の測 定を(自動で)行い、その (ビッグ)データの中から、 様々な統計解析手法等 を用いて候補を導き出さ なければなりません。

<Question>

http://www.first-ms3d.jp

「先端診断イノベーションゾーン」

2014年9月3日~5日 幕張メッセ国際展示場

http://www.first-ms3d.jp

http://www.first-ms3d.jp

「先端診断イノベーションゾーン」

2014年9月3日~5日 幕張メッセ国際展示場

http://www.first-ms3d.jp